
EFFECT OF INERTIA IN A LUBRICANT ON THE THERMOPHYSICAL 

PROCESSES IN THE RADIAL SLIP BEARINGS OF TURBINE-DRIVEN 

MACHINERY 

V. V. Rukhlinskii and A. V. Ermolenko UDC 621.165.822:536.24 

The results from a numerical solution of the spatial nonisothermal problem of 
lubricant flow and heat transfer in a radial bearing are presented in con- 
junction with consideration of the lubricant inertia. 

The contemporary level of development in turbine-drive machinery is characterized by 
a rise in the radial velocities of the shafts in slip bearings as well as by the transition 
to low-viscosity lubricants. This trend is enhanced through the increasing appearance of 
inertial effects in lubricant flows. The well-known theoretical work [1-3] into the effect 
of inertial forces on the functioning of slip bearings was done in the assumption that the 
lubricant flow was isothermal. Nevertheless, it has been demonstrated in numerous papers, 
particularly in [4-6], that the thermal processes in the stress-bearing lubricant layers of 
slip bearings play a decisive role in the distribution of the pressures and velocities of the 
lubricant in the working spaces. On the other hand, with consideration of the lubricant 
inertia, the hydrodynamic problem becomes nonlinear and its solution becomes more complex. 
The various methodsof linearizing the original equations, used in analyzing the effects of 
inertia, sometimes result not only in quantitatively, but also in qualitatively, divergent 
results. 

Unlike the estimation approaches to the analysis of inertial effects, the latter based 
on the utilization of various methods for the linearization of the isothermal equations of 
motion, the authors have also worked out a mathematical model, numerically generated, for 
the nonisothermal flow of the lubricant, as well as for the associated transfer of heat in 
the radial slip bearing, said model based on the direct solution of truncated Navier-Stokes 
equations written with consideration of the convection inertia terms, together with the dif- 
ferential equations of heat transfer in the lubricant and in those structural elements which 
contain it. The system of differential equations written in dimensionless quantities in 
this case has the form: 

the equations of motion 
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the equation for the distribution of lubricant pressure 
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the continuity equation 
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the equation of lubricant energy 
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the equation of shaft heat conduction 
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the equation of bearing heat  conduction 
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Equation (3) has been derived by differentiation of (i) and (2) with respect to x and y, 
respectively, followed by their subsequent addition and integration from 0 to h with consider- 
ation of the condition 8p/By = 0. Equation (4) is a continuity equation differentiated with 
respect to the variable y. In its solution, this makes it possible to find the distribution 
of the velocity v which satisfies the boundary conditions y = 0 and y = i at the surfaces. 

In solution of Eqs. (1)-(4) for the velocities and pressures we use the following con- 
ditions : 

l I 

when x = 0  P=Po, w=0 ,  f Iuhdzdg=G; 
0 0 
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when t J=0 u =  1, v = ~ = 0 ;  (8) 

when R= 1 u = v = w = 0 ;  
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0 0 0 

The boundary conditions for the temperatures were chosen from an analysis of the heat- 
transfer processes occurring at the surfaces bounding the bearing-lubricant-shaft region. 
We employed boundary conditions of the 3rd kind on the external surfaces of both the bearing 
and the shaft: 

~(Tb --T~, = _z_OTo,, ,, 
(9) 
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Over the contour of the lubricant layer, with 0 < y < i, we made use of the following 
conditions: 

Of O{ xh--~-~ when x = O  t - -  1: x =xh - , 
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The temperature values at the boundary between the shaft and the lubricant and between 
the lubricant and the bearing were derived from the conjugacy conditions. For the bearing 
these conditions in dimensionless form are written as follows: 

1 Ot I _- ~,~.. Otv ~=/ 
when g = 1 or r = 1 t - ~  tp, h Oy v=l ~ Or ( 1 1 )  

Taking into consideration the assumption of circumferential isothermicity for the shaft 
at the boundary between the shaft and the lubricant, we achieved conjugacy conditions of 
the following form: 

when y = 0 or r = 1 t = t~,, 1 ~xr 1 at u=od x = ~kw ate, 
xk h Oy ~-~ O r  r=~" ( 1 2 )  

The system of differential equations (i)-(7), together with the boundary conditions (8)- 
(12), were solved by a finite-difference method which involved the utilization of the implic- 
it locally one-dimensional schemes described in [6, 7]. The solution was accomplished by 
a run-through method. The additionally introduced conditions for u, w, and t in (8) and 
(i0) have no effect on the physics of the processes, but make it possible to carry out this 
method. Approximation of the first-order derivative in (i), (2), and (5) was accomplished 
with utilization of that spatial weight whose values were selected from the conditions for 
the positive approximation of the equations. 

For a comparative analysis of the effect of lubricant inertia, and in order to reduce 
the time of calculation, we initially solved a problem based on application of the classical 
nonisothermal Reynolds equation valid for noninertial lubricant flow [6]. The mathematical 
model was retained in this case for the thermal processes. The resulting distributions of 
pressure, velocity, and temperature were taken as an initial approximation for the solution 
of the inertial problem. 

We carried out the calculations by the described method for a shaft with a diameter d = 
420 m~ that is extensively used as a journal bearing in turbine construction. A twice- 
tapered split bearing with shifting bushings permittedan extension of 130 ~ for the upper 
bushing, and 140 ~ for the lower. For our original base values, we have taken the following 
quantities as the regime and geometric parameters: shaft rotation speed n = 3000 rpm; the 
initial lubricant temperature T = 40~ bearing width L = 0.335 m (L/d = 0.8); radial clear- 
ance 6 h = 0.0005 m; degree of ellipticity 6v/6 h = 0.5; the horizontal displacement of the 
upper half relative to the lower, i.e., eh = eh/6h = 0.5, where e h is the absolute magnitude 
of the horizontal displacement; the relative eccentricity e = 0.75. In these calculations 
we employed the physical characteristics of "Turbine-22" oil. 

The calculations were carried out for an adiabatic bearing, i.e., it was assumed in Eq. 
(9) that ~ = 0. The outer bearing radius R 2 = 0.294 m. We modeled the flow of heat to 
the inside depression of a shaft with a radius R0 = 0.147 m by assuming that ~ = 600 W/(m 2- 
deg) and the ambient-medium temperature T a = 100~ 

The calculations demonstrated that the influence of the inertial effects increases as 
the speed of shaft rotation rises. When n < i000 rpm (U < 21 m/sec) the solutions of the 
noninertial and inertial problems virtually coincide with respect to all indicators (Fig. i). 
Subsequently, as the circumferential velocity increases there is a redistribution of the lu- 
bricant pressures in the working spaces of the upper and lower bushings. When n = 3000 rpm, 
consideration of the lubricant inertia leads to an increase in the maximum pressures by 16% 
within the load-carrying bushing, and to a reduction by 12% in the level of pressures within 
the working space of the upper bushing (Fig. i). The diverse nature of the influence ex- 
erted by inertial forces in the carrying, as well as in the nonstressed, lubricant layers 
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Fig. i. Circumferential distribution of 
pressures in the lubricant layer: a) upper 
half; b) lower half; i) n = i000 rpm; 2) 
2000 rpm; 3) 3000 rpm; I) with considera- 
tion of the inertial effects; II) without 
consideration of the inertial forces in 
the lubricant. P, mP; 2~, ~, ~/rad. 
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T e m p e r a t u r e  d i s t r i b u t i o n  i n  a r a d i a l  b e a r -  
ing: a) in the axial direction; b) in the radial 
direction; i) n = i000 rpm; 2) 2000 rpm; 3) 3000 
rpm; I, II) see Fig. i. T, ~ 

bears witness to the complexity of the processes occuring within them. It has been demon- 
strated analytically that the fundamental factors determining the degree to which inertial 
forces make their appearance are the magnitudes of the lubricant thickness and of the pres- 
sure gradients. The highest pressure gradients and the lowest lubricant thicknesses are 
attained in the lower working space. This enhances an increase in pressures as a consequence 
of the inertial forces. The relationship between the pressures and the effect of the iner- 
tial forces in the upper working space is more complex. Here, the lubricant thicknesses 
are several times greater, and the pressure gradients are severalfold smaller. Moreover, 
as was demonstrated by calculation, the effect of the inertial forces leads to a reduction 
in the load angle and to an increase in lubricant outflow at the end. As a result of the 
total effect of the cited factors, the appearance of inertial forces leads to some reduction 
in the pressures within the upper space. 

Making provision for the inertial forces in the case of constant eccentricity has little 
effect on the temperature distribution in the lubricant layer: the fundamental effect is 
associated with some increase in the axial temperature gradient (Fig. 2a). 

It should be noted that inclusion within the region being calculated not only of the 
lubricant layer, but of the structures which contain the lubricant, as well as consideration 
of the process of heat transfer between these structures, made it possible to obtain a spa- 
tial temperature field for all elements of the "shaft-lubricant-bearing" system. The tem- 
perature distribution (Fig. 2b) is both complex and nonlinear in nature, dependent on the 
great number of geometric and regime parameters, as has been demonstrated by actual investi- 
gation. 

The redistribution of the pressures in the lubricant layer leads to a change in the in- 
tegral characteristics of the bearing as a consequence of the effect of the inertial forces. 
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Fig. 3. Change in the integral characteristics of a bear- 
ing as a function of shaft rotation speed: i) stress- 
carrying capacity of the bearing; 2) lubricant flow rate; 
3) power losses; 4) maximum bushing temperature; 5, 6) 
heat flows at the shaft surface for the upper and lower 
halves of the bearing, respectively; I, II) see Fig. i. 
N, kW; Pc, kN; G, kg-f; Qw, W; Tma x, ~ n, rpm. 

Most significant is the effect of the inertial forces on the increase in the carrying capac- 
ity of the bearing, in particular as the shaft rotation speed increases. When n = 1000 rpm, 
if the effect of the inertial forces does not result in an increase in the carrying capacity, 
then when n = 2000 rpm the increase amounts to 8%, reaching 17% when the shaft rotation 
speed reaches n = 3000 rpm (Fig. 3a). 

Consideration of the inertial forces leads to some reduction in power losses resulting 
from the redistribution of velocities in the lubricant layer. Reduction of the lateral 
gradients of the circumferential velocity component U (most perceptible at the inlet and 
outlet segments of the taper, where we find the thickest lubricant layers) leads to a re- 
duction in the force of friction in the bearing. 

The thermal characteristics of the bearing for a given magnitude of the eccentricity 
are virtually independent of the lubricant inertial forces. An increase in the shaft ro- 
tation speed leads to an intensification of the transfer of heat within the upper lubricant 
layer and to a reduction in the transfer of heat in the lower layer. The combined heat 
flows removed by the lubricant from the shaft are reduced in this case (Fig. 3b). 

Table 1 shows the results from our investigation into the extent to which the appear- 
ance of lubricant inertia is affected by the magnitude of the radial space, ellipticity, 
eccentricity (load), horizontal displacement, the width of the bearing, and the initial tem ~ 
perature. 

The funda~,ental conclusion drawn from the results of the analysis of our numerical stud- 
ies lies in the fact that the effect of the subject parameters on the inertial effects coin- 
cides with their influence on the change in the pressure gradients. 

Our attention is drawn to that circumstance in which the combination of any given geomet- 
ric and regime parameters may vary as a function of the velocity boundary for the appearance 
of inertial effects. If for a bearing with a diameter d = 0.42 m and a relative width L/R = 
1.595, the effect of inertia becomes perceptible even at n = 2000 rpm, whereas for a more 
narrowbearing with a relative width of the stress-carrying surface, i.e., L/R = 0.89 (diame- 
ter d = 0.315 m), the boundary at which the inertial forces are taken into consideration 
shifts toward the values of n = 2800-3000 rpm. The Reynolds numbers Re = ~R6/v in this case 
are, respectively, equal to 611 and 1118. The substantial difference between these two num- 
bers bears witness to the fact that without consideration of the basic geometric and regime 
parameters, the Re number cannot serve as the solitary criterion of feasibility for taking 
the inertial forces of the lubricant into consideration. This is confirmed, moreover, by 
the fact that in the range of changes in the initial temperature of the lubricant from 30 ~ 
to 50~ the Re number increases by a factor of 2.5, whereas the difference between the maxi- 
mum and minimum increases in the carrying capacity amounts to less than 30% as a consequence 
of taking the inertial forces into account, and here the greatest increment occurs at T o = 
40~ i.e., when the Re number corresponds to the middle of the interval under consideration. 
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TABLE i. Results from a Parametric Study of a Radial Slip 
Bearing 

Varia61e 
l~arameter. 

e = 0 , 6  

e = 0,7 

e = 0 , 8  

e = 0 , 8 5  

n ~ 1000 

n = 1500 

n = 2000 

n = 2500 

n = 3000 

eh= O, 75 

e h = l  

L/d=O,5 

L/d=0,65 

L / d=0,95 

~v/ah=0,4 

6v/6h=0,6 

To=30~ 

To=50~ 

6,h~0,3 
e = 0 , 6  

6h=0 ,4  
e = 0 , 7  

6h=0 ,6  
e = 0 , 8  

Sym- 
bol 

b l u  
T~ax, QW; 

1693 [ 
1690 1 
2236 
2244 

3349 
3362 

2505 
2516 

2915 
2899 

3273 
3308 

2323 
2323 

2248 
2273 

2774 
2837 

2677 
2682 

W 

1582 
1584 

1031 
1044 

130 
70 

865 
892 

1250 
1253 

1063 
1069 

908 
931 

786 
789 

677 
649 

988 
979 

i283 
1276 

487 
495 

594 
581 

757 
734 

860 
856 

596 
573 

705 
642 

597 
595 

1207 
1171 

708 
628 

745 
747 

3564 
3567 

3513 
3515 

3351 
3318 

3107 
3102 

3650 
3656 

3593 
3600 

3545 
3550 

3508 
3503 

3459 
3449 

3340 
3338 

3231 
3231 

2180 
2185 

2830 
2825 

4106 
4097 

3365 
3372 

3511 
3472 

3981 
3950 

2920 
2918 

3455 
3444 

3482 
3465 

3422 
3430 

Note. The symbol R denotes solution of noninertial lubri ~ 
cant flow with utilization of the Reynolds equation; J de- 
notes the laminar inertial flow of the lubricant. 

The investigations that have been carried out have demonstrated that the inertial ef- 
fects promote an increase in the carrying capacity of the bearings, which may be treated as 
a positive fact for heavily loaded slip bearings. For lightly loaded high-velocity bearings 
situated near the boundary of dynamic stability, the appearance of inertial forces may be- 
come the cause for the transition of these bearings to regimes of unstable operation. In 
each and every case, the method developed here for slip bearings makes it possible more pre- 
cisely to account for the actual physical processes occurring within the lubricant layers. 

NOTATION 

X, Y, Z, circumferential, radial, and axial coordinates; x = X/R, y = Y/H = Y/h6, z = 
Z/R, dimensionless coordinates; U, V, W, circumferential, lateral, and axial velocity com- 
ponents; u = U/mR; v = V/m6; w = W/mR, corresponding dimensionless velocity components; P, 
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lubricant pressure; H, lubricant thickness; T, lubricant temperature; p = P~a/po~; h = H/6, 
t = T/To, dimensionless values for lubricant pressure, thickness, and temperature; r = Rj/R, 
dimensionless radial coordinate; Rj, radius of the j-th section of the shaft or bearing; 

= B/~o; Re = m62/v; Ec = m2R2/cTo; ~ = 6/R; To, lubricant temperature at the inlet to the 
bearing; R, shaft radius; 6, radial clearance (space); ~, angular speed of shaft rotation; 
~, v, c, dynamic and kinematic viscosity, as well as the specific heat capacity of the lubri- 
cant oil; s = L/R, relative width of the bearing; Xk, coordinate of the point at which the 
lubrication layer separates from the shaft; =, heat-transfer coefficient; Ta, temperature of 
the ambient medium; Ts, temperature of the heat-exchange surface; @c, load angle; Dc = Pc~ 2/ 
~mRL, dimensionless load factor; Pc, carrying capacity of the bearing; ffr = N/PcU, coeffi- 
cient of shaft resistance to rotation; N, force of friction; G, lubricant flow rate; Tmax b, 
maximum temperature at the working surface of the bearing; QW u, QW s QWz, flows of heat to 
the shaft surface, respectively, for the upper and lower halves, as well as the total flow. 
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